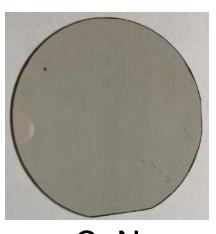

【概要紹介】


パワーデバイス用半導体結晶材料の進展

羽深等(横浜国立大学 名誉教授)

- 1)既存ON LINE講座の概要 「Si, SiC, GaN等の結晶とウエハ」
- 2) 追加された講座の内容: 諸結晶のその後の研究開発状況紹介

GaN

 $\beta \, \mathsf{Ga_2O_3}$

既存ON LINE講座「Si, SiC, GaN等の結晶とウエハ」の内容

- 1. パワー半導体素子 役割、用途、半導体物質と周期律表
- 2. 化学結合とパワー半導体 化学結合とバンドギャップ、絶縁破壊電界強度とオン抵抗、WBGの展開
- 3. 炭化珪素 特徴、結晶塊育成、エピタキシャル成長、生産技術課題
- 4. <u>窒化ガリウム</u> 特徴、結晶基板生産、エピタキシャル成長法と課題、デ バイス構造と課題
- 5. シリコン 特徴、結晶生産方法、デバイス作製工程
- 6. 酸化ガリウム 特徴、結晶生産方法
- 7. 結晶の選択 諸結晶の課題、<u>材料を選ぶ条件</u>

【追加】パワーデバイス用半導体結晶材料の進展

【前提】既存ON LINE講座の基本知識 ⇒ 新情報を追加

特性•展望

パワーデバイス用半導体結晶 結晶の特性 パワー半導体結晶材料の展開 MOSFETの横型と縦型 SiCとGaNのすみ分け

個別結晶

新たな結晶育成法 結晶品質 シリコン 炭化珪素 窒化物系半導体結晶 酸化ガリウム ダイヤモンド 酸化ゲルマニウム UWBG結晶の課題 諸結晶材料の開発段階MAP

2つの講座を総合 ⇒ 今後の姿を予想

パワーデバイス用半導体結晶材料の進展

羽深 等(横浜国立大学 名誉教授)

- 1) 既存ON LINE講座の内容 「Si, SiC, GaN等の結晶とウエハ」
- 2)パワーデバイス結晶のその後の研究開発状況紹介

既存ON LINE講座「Si, SiC, GaN等の結晶とウエハ」の内容

- 1. パワー半導体素子 役割、用途、半導体物質と周期律表
- 2. 化学結合とパワー半導体 化学結合とバンドギャップ、絶縁破壊電界強度とオン抵抗、WBGの展開
- 3. 炭化珪素 特徴、結晶塊育成、エピタキシャル成長、生産技術課題
- 4. <u>窒化ガリウム</u> 特徴、結晶基板生産、エピタキシャル成長法と課題、デ バイス構造と課題
- 5. シリコン 特徴、結晶生産方法、デバイス作製工程
- 6. 酸化ガリウム 特徴、結晶生産方法
- 7. 結晶の選択 諸結晶の課題、<u>材料を選ぶ条件</u>

既存ON LINE講座から再度: "材料を選ぶ条件"

- 性能が良いに越したことはないが、値段が最優先。
- ・高コスト(量産性のない)半導体は主役になれない。
- ・但し、信頼性は必要。
- ・使うのは化合物群(半導体、酸化物、窒化物、塩化物、 フッ化物、など)&総合物性(化学的・物理的・電気的)
- 生産に関わる化学反応全般が、容易であること。
- •電子を沢山流せる・しっかり止められる (ドーピング可能・絶縁膜形成可能・酸化膜/半導体界面 形成可能)
- 半導体プロセスに耐えられる硬さ
- ・材料:2元の難しさは単元素半導体の4倍以上
- •Siで可能な用途では、他の材料が置き換われない。
- •Si=最先端材料:種々の材料がSi技術の歴史を追う。

パワーデバイス用半導体結晶材料の進展

パワーデバイス用半導体結晶 結晶の特性 パワー半導体結晶材料の展開 MOSFETの横型と縦型 SiCとGaNのすみ分け

シリコン 炭化珪素 窒化物半導体結晶 酸化ガリウム ダイヤモンド 酸化ゲルマニウム UWBG結晶の課題 諸結晶材料の開発段階

パワーデバイス主要各社の投資計画 電子デバイス産業新聞20230209 企業名 計画など

インフィニオン フィラッハでSi系の300mm生産拡大、ドレスデン、クリムで新 棟建設

GFの300mm工場を取得、Si系IGBT・MOSFETを生産、韓国・

オンセミ

冨川でSiC投資

アグラテ工場で新棟建設。カターニアでSiCウエハ新工場建 STマイクロエレ 設。シンガポールで増産投資

ウルフスピード SiC8インチデバイス工場、23年4月稼働開始 ドレスデンで300mm投資、ロイトリンゲンで200mm投資 ボッシュ

デンソー 生産委託先のUSJCで300mmライン投資 三菱電機 福山の一部建屋に量産ライン設置

富士電気 松本、津軽でSiC6インチ投資。マレーシアで200mm投資 筑後で新棟建設、宮城でSiC新規投資

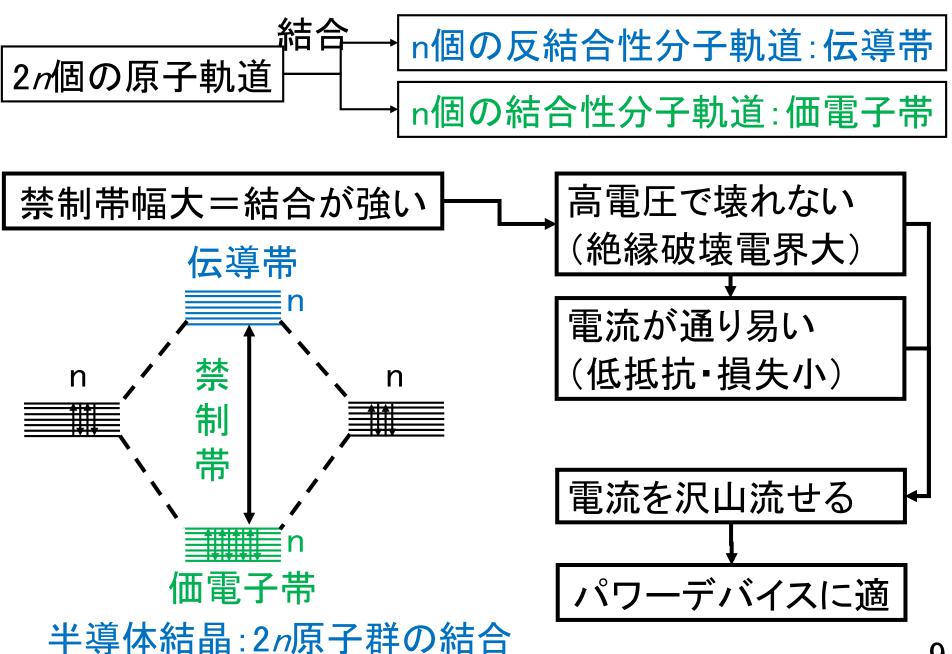
ローム

ルネサスエレ

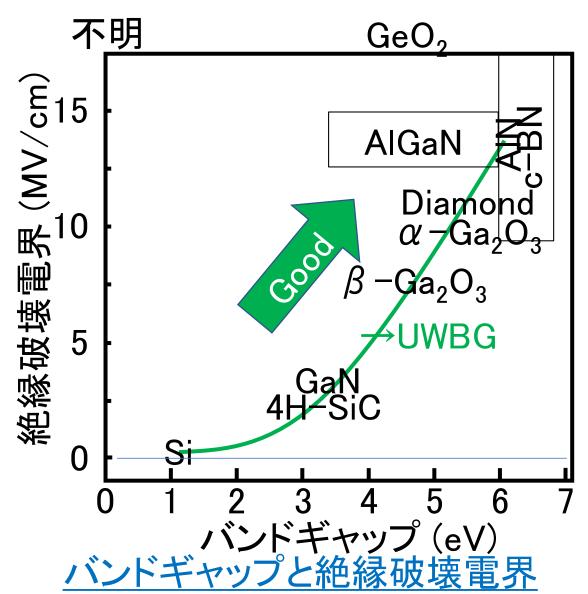
ミネベアミツミ

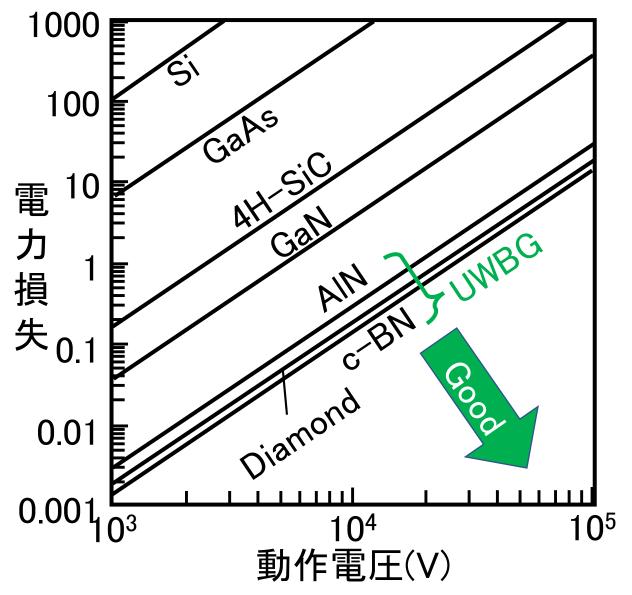
JSファンダリ

東芝デバイス&スト


加賀東芝に300mmラインを設置。SiCは姫路&加賀

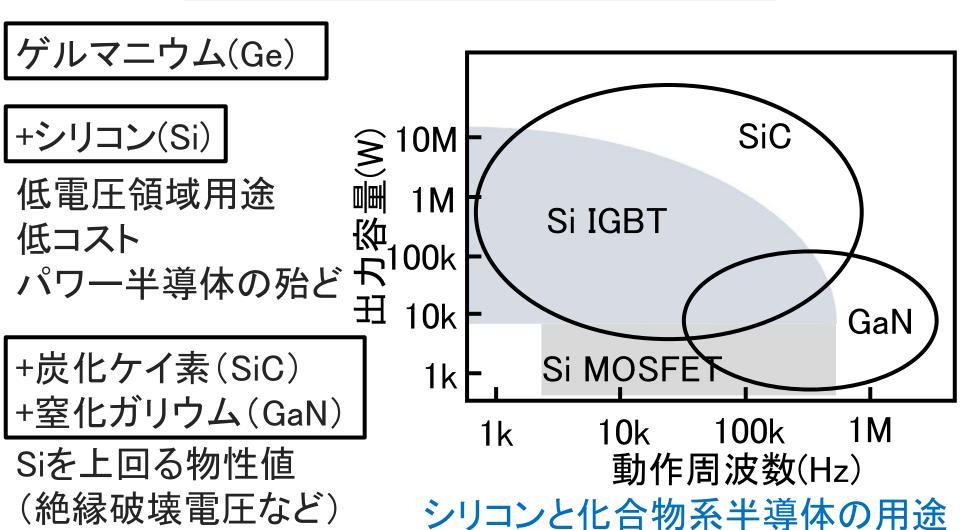
900億円投資して甲府を再稼働。生産能力2倍に。


千歳と野洲で計170億円投資。8インチ対応本格化

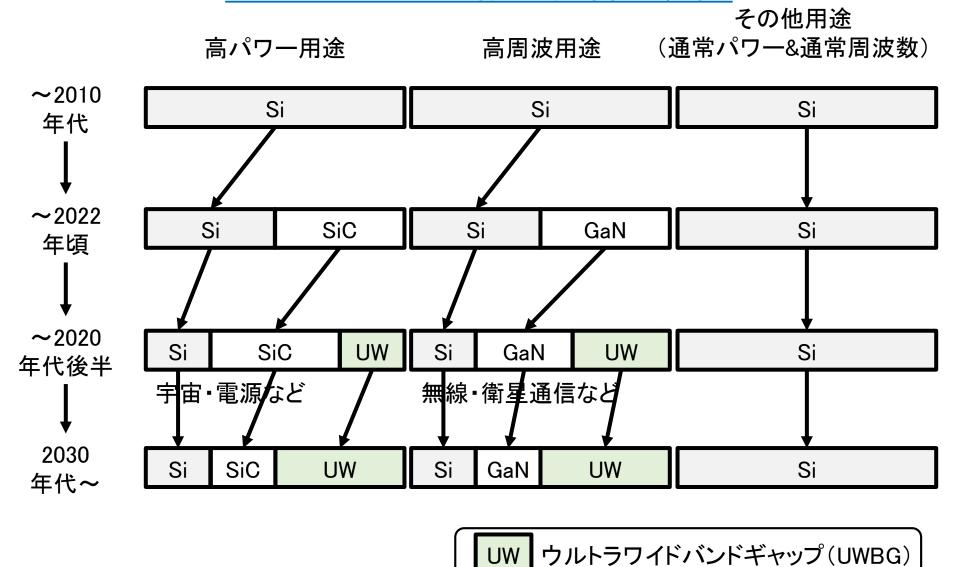

オンセミ新潟買収、200mmライン新設。生産能力2倍超に。

パワーデバイスに使い易い半導体結晶

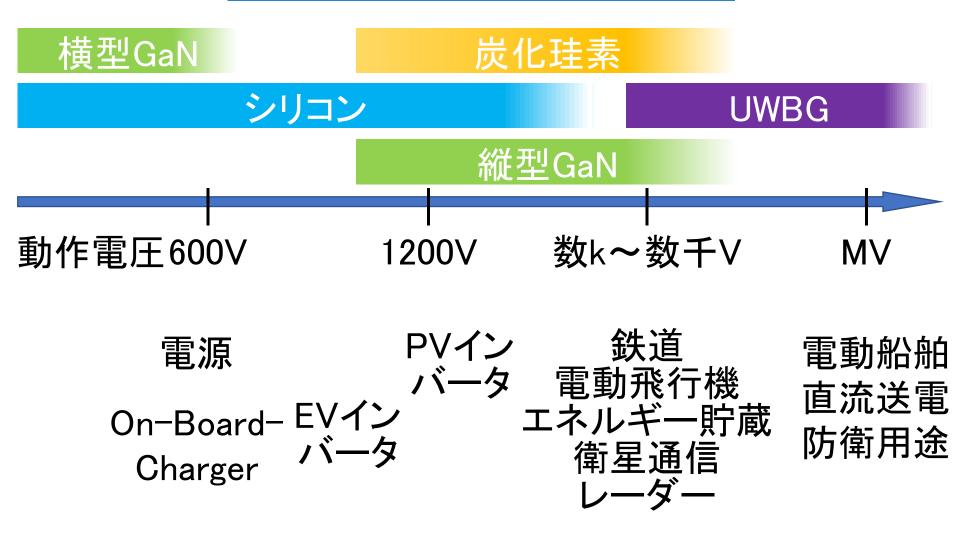
ウルトラワイドバンドギャップ(UWBG):禁制帯幅>GaN



パワーデバイスの動作電圧と電力損失


平間 一行 ほか、NTT技術ジャーナル 2019.8、P.29-34.

パワー半導体結晶材料の展開(歴史)



+UWBG結晶

SiCとGaNはなぜ注目される?、「パワー半導体」10の疑問、土屋 丈太日経クロステック/日経エレクトロニクス、2022.06.27

13

動作電圧とパワーデバイス結晶材料

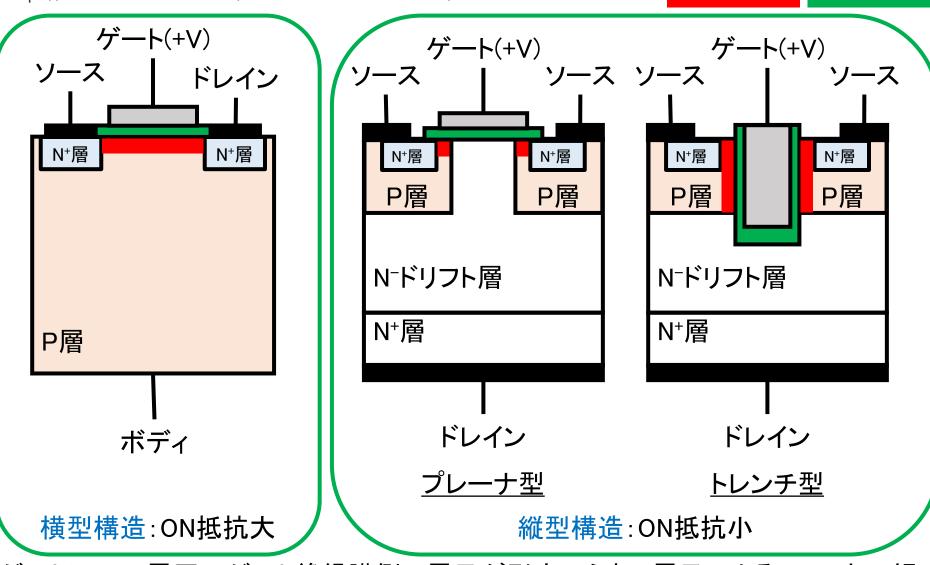
各種半導体ウエハの値段

Si	~300 mm Ф	≪SiC, GaN, ほか
SiC	150 mmΦ	10万円前後
GaN	50 mmΦ	10~40万円
β – Ga_2O_3	100 mmΦ	60万円
AIN	25 mmΦ	10万円以上(推定)
	50 mm Φ	約84万円
ダイヤモンド	50 mm Φ	100万円以上(推定)

富士経済 パワー半導体世界市場単位:億円 (半導体デバイス産業新聞 2022年12月1日)

	2021	2022	2023	2024	2025	2026	2030
世界市場	20911	23386	26196	29638	33952	39504	53587
内訳							
Si	20124	22137	24379	27020	30179	33964	43118
SiC	756	1206	1756	2516	3598	5217	9694
GaN	32	39	51	69	96	144	305
Ga_2O_3		3	10	33	79	179	470

用途とUWBGの適合性


用途	必要な材料特性	コスト 要求	UWE	3G適合性
宇宙	パワー特性、耐高温 高周波特性、耐放射線	低	高	堅牢な結晶であること
防衛	パワー特性 高周波特性	低	高	UWBG&高周波 特性
系統電源 太陽光発電	パワー特性 高周波特性	高	高	高パワーと小型 化の両立
6G 衛星通信	高周波特性	中	高	高周波デバイス の高出力化
車載	パワー特性 高周波特性	高	低	実績のあるデバ イスであること
小型電源	高周波特性	高	中	大電力が必要

MOSFETの横型と縦型

https://detail-infomation.com/mosfet-horizontal-vertical/

チャネル

絶縁膜

ゲートに正の電圧→ゲート絶縁膜側に電子が引寄せられ、電子によるNチャネル領域(電気の通り道)を形成→ドレインからソースに向かって電流が流れる。 18

SiCとGaNのすみ分け

SiC 「縦型」 耐圧特性を生かして、EV 駆動用インバーターや鉄道 などに

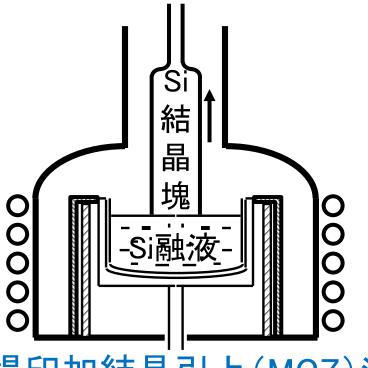
<u>GaN</u>

現在「横型」(GaN-on-Si) スイッチング周波数が高い。

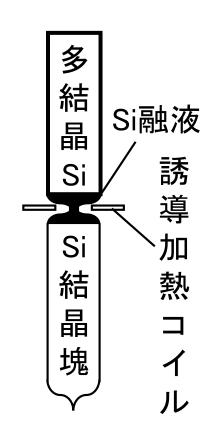
周辺回路の小型化が望める 小型電源やサーバー電源、 高分解能化につながるLiDAR などで普及

将来「縦型」(GaN-on-GaN)が 出てくれば、GaNの耐圧性能 を十分に活かせる。

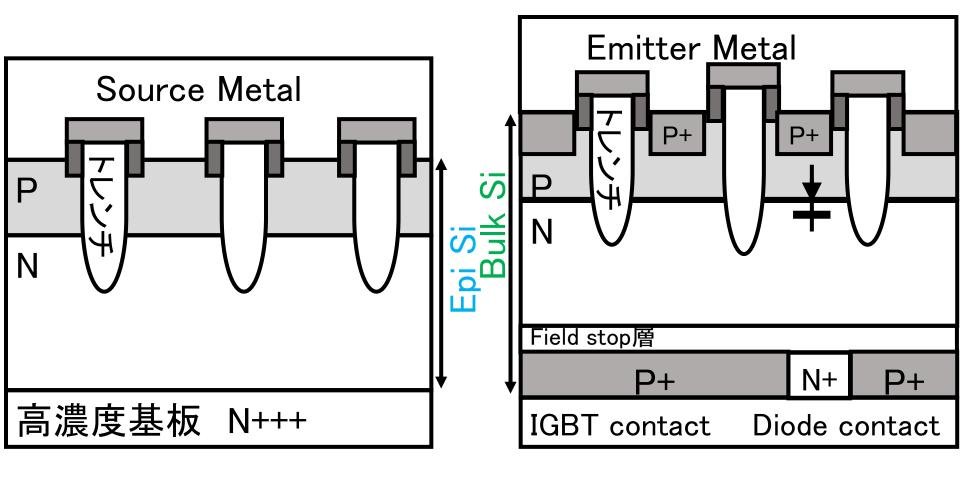
LiDAR: Light Detection and Ranging


日経エレクトロニクス、P. 43~68, 2023.02

SiCとGaNはなぜ注目される?、「パワー半導体」10の疑問、土屋 丈太 日経クロス


テック/日経エレクトロニクス、2022.06.27

シリコン(Si)

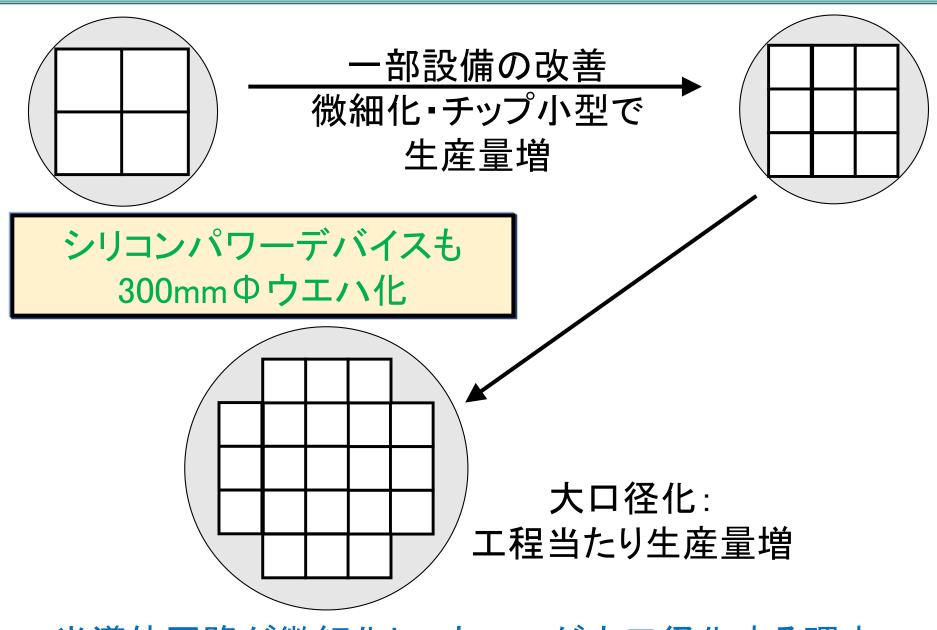

磁場印加結晶引上(MCZ)法

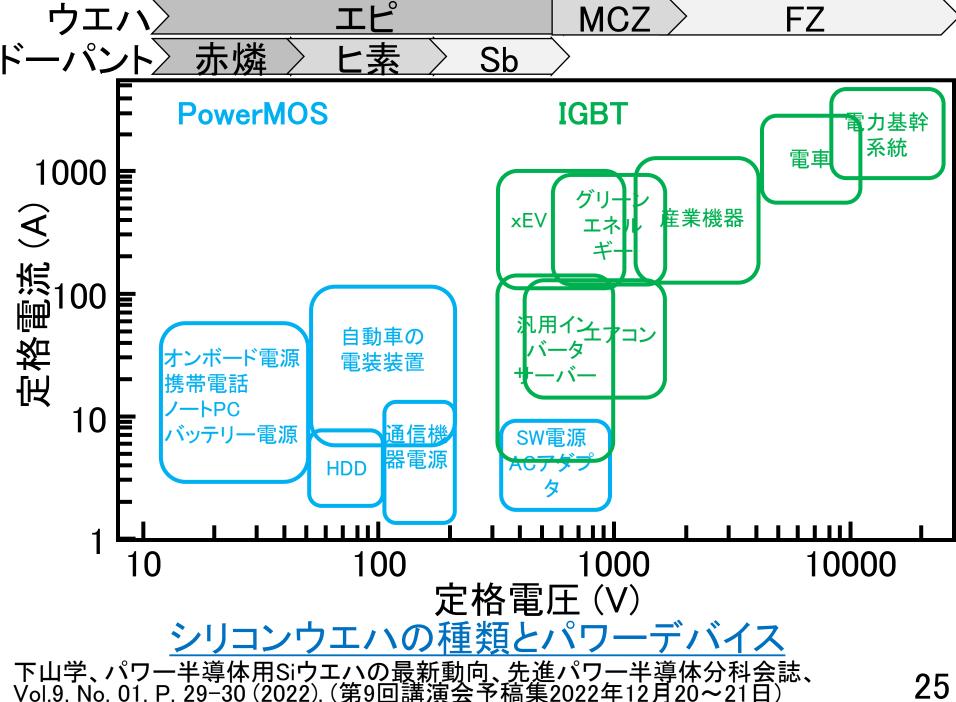
溶融帯域(FZ)法

生産量増大→直径300mmのウエハを採用→MCZ結晶へ 21

シリコンウエハの種類とパワーデバイス(模式図)

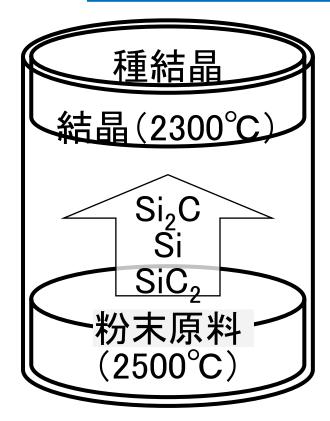
PowerMOSFET

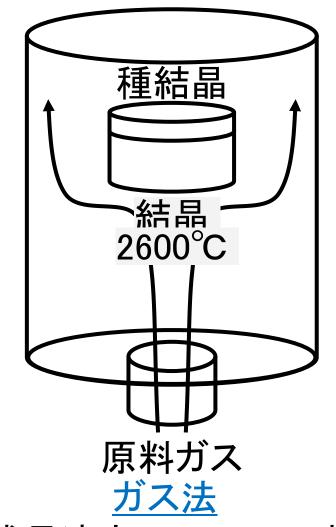

IGBT


下山学、パワー半導体用Siウエハの最新動向、先進パワー半導体分科会誌、 Vol.9, No. 01, P. 29-30 (2022). (第9回講演会予稿集2022年12月20~21日)

シリコンウエハの種類とパワーデバイス

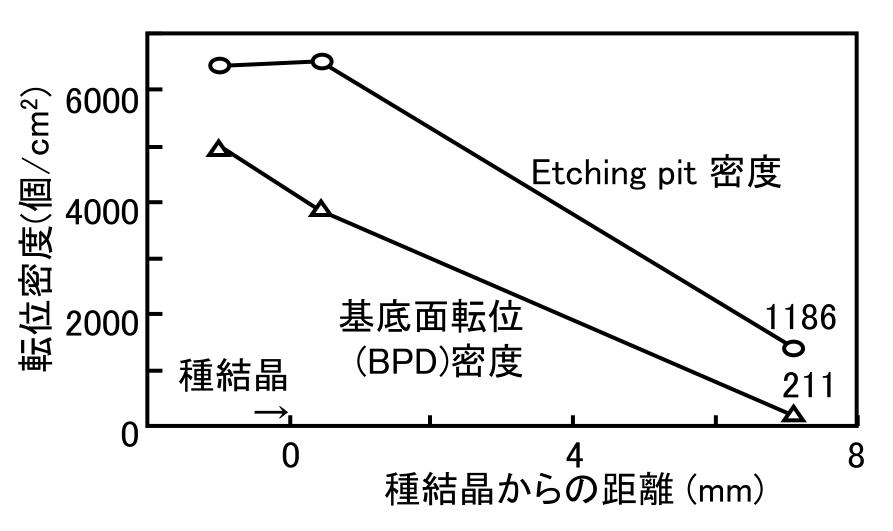
	PowerMOSFET	IGBT	
用途	モバイルフォン、サーバー など	ハイブリッド車、電気自動車、 産業機器	
構造	トレンチ構造 高濃度基板 (ドーパント:ヒ素, 赤燐)	トレンチ構造 Field-Stop層	
重要なデ バイス特性	低オン抵抗 耐圧/リーク電流の安定 化	オン抵抗のばらつき低減 耐圧/リーク電流の安定化	
ウエハ	エピウエハ	バルクウエハ(FZ, MCZ)	
求められる ウエハ品 質	エピ厚、抵抗率ばらつき低 減 エピ用基板の低抵抗化	抵抗率ばらつき低減 欠陥低減 (COP, LPD, BMD)	
生産性向 上策	300mm 中化	300mmΦ化(FZ→MCZ) MCZ結晶の取得率増 (Sbドープ化)	
下山学、パワー半導体用Siウエハの最新動向、先進パワー半導体分科会誌、Vol.9, No. 01, P. 29-30 (2022). (第9回講演会予稿集2022年12月20~21日) 23			


要点:ウエハ全体一括処理(成膜・研磨・露光・エッチング)



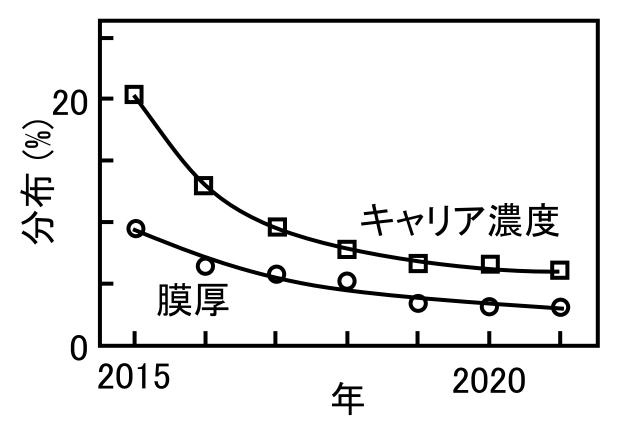
炭化珪素(SiC)

炭化珪素(Silicon Carbide) 結晶塊育成法



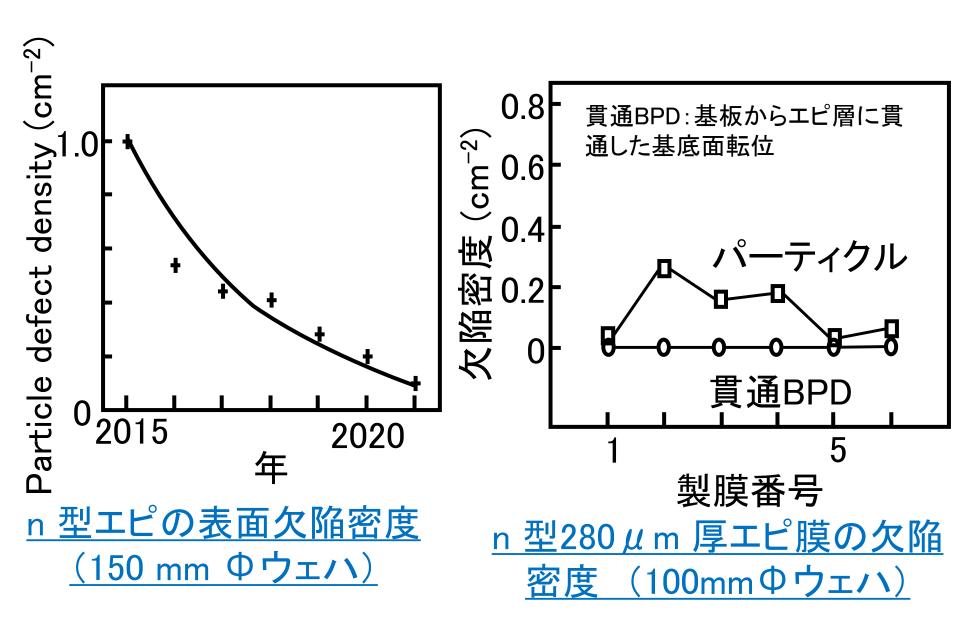
昇華法:改良Lely法

成長速度0.2~0.5mm/時 約10日間 成長速度1.5~3mm/時


150mm Φ、約8mm厚結晶を一日

金村 髙司、車載用SiC パワー半導体の開発動向、日本学術振興会「結晶加工と評価技術第145委員会」第176回研究会資料(2022. 10. 21)P5~10

ガス法による150mmΦ結晶の転位密度


金村 髙司、車載用SiC パワー半導体の開発動向、日本学術振興会「結晶加工と評価技術第145委員会」第176回研究会資料(2022. 10. 21)P5~10

SiC厚エピタキシャル膜成長技術の進歩

n 型エピの膜厚とドーピング濃度の分布(150 mm Φウェハ) (ウェハ面内測定値全点のうちスペックからの最大ズレ)

馬渕 雄一郎 ほか、高品質SiC ウエハの開発と大口径化の動向、日本学術振興会「結晶加工と評価技術第145委員会」第176回研究会資料(2022.10.21)P.1~4

馬渕 雄一郎 ほか、高品質SiC ウエハの開発と大口径化の動向、日本学術振興会「結晶加工と評価技術第145委員会」第176回研究会資料(2022, 10, 21)P.1~4

窒化物系半導体結晶 GaN, AIGaN, AIN

GaN結晶の課題

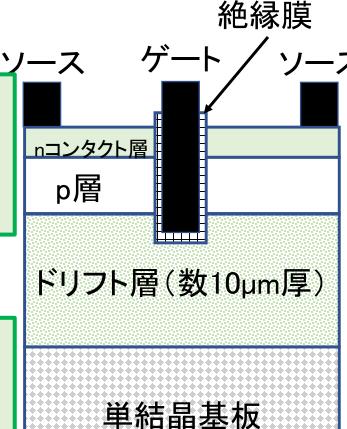
要求: 耐圧0.65~3.3kV、電流量100A/チップ、歩留90%

- •低転位
- ・低反り
- •150mm Φを10万円以下に
- [1] 小口径: 現状50~100mm Ф
- [2] 結晶品質不足:転位密度~10⁶ cm⁻² 電流リーク オフ角度(ウエハ反りの指標) 0.2°/50mm
- [3] 高価:現状10~20万円(50mmΦ)

サファイア基板上にHVPE法の場合

- •GaNとの格子定数の違い→転位多発
- ・成長温度(約1000°C)から冷却時に基板全体が反る (オフ角発生)

「縦型」量産レベル現状比較



エピ層

·不純物·点欠陥 密度 <10¹⁴/cm³台

- 基板結晶
- •150mm Φ
- •数10mm長
- •転位密度:

~10²-10³/cm²台

ドレイン

窒化ガリウム(GaN)

エピ層

MOCVD:

炭素混入(~10¹⁶/cm³)

低速(~1µm/h)

HVPE: >100 µm/h

高純度

基板結晶

- -50~100mm Φ
- ■数mm厚
- •転位密度:
 - ~10⁵−10⁶/cm²台
- ■量産: HVPE法が主
- 150mm 中化へ

藤倉 序章ほか、HVPE 法による高品質GaN on GaN ウエハ、日本学術振興会「結晶加工と評価技術第145委員会」第178回研究会資料(2023. 1. 18), P.5~10.

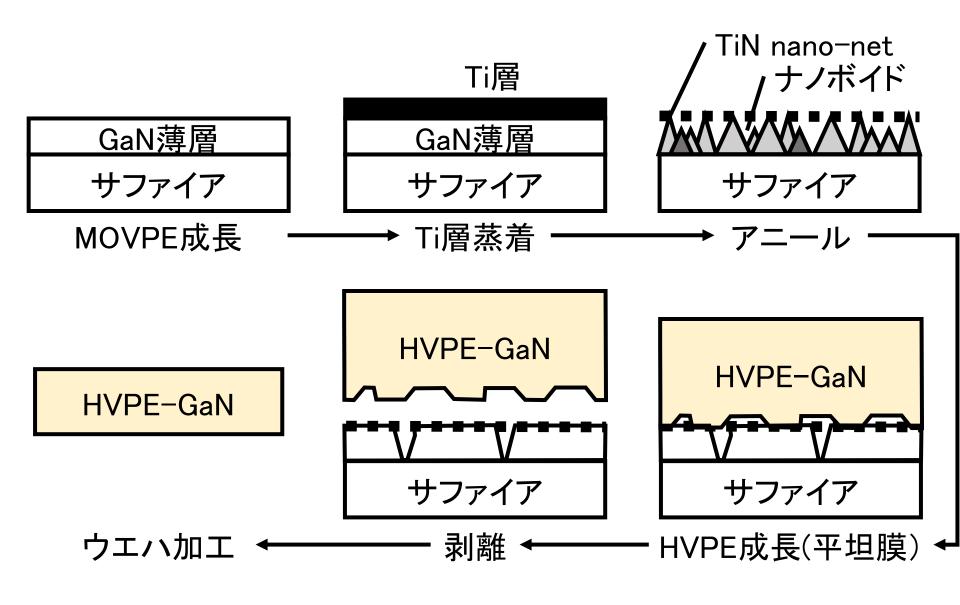
GaN結晶膜形成法 比較

HVPE法によるGaN製膜装置

藤倉 序章ほか、HVPE 法による高品質GaN on GaN ウエハ、日本学術振興会「結晶加工と評価技術第145委員会」第178回研究会資料(2023. 1. 18), P.5~10.

GaN結晶膜形成法 比較

有機金属気相成長(MOCVD)法

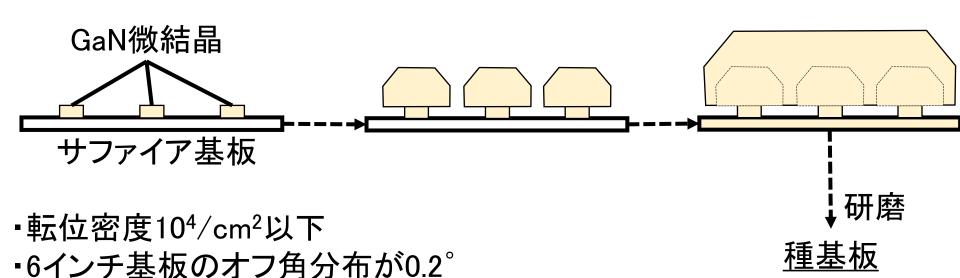

課題

- •低成長速度
- -カーボンの混入

HVPE法

- カーボン混入なし
- •GaN 結晶の高純度化
- ・高純度化により電子、光物性を大幅に改善

厚い高純度なドリフト層を必要とするGaN 縦型パワー デバイス用の成長法として有望

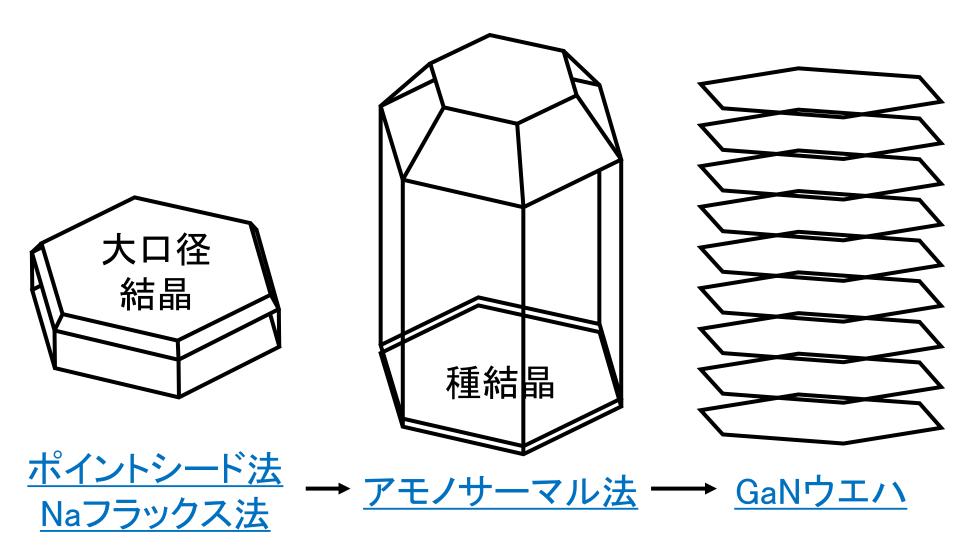

Void-Assisted Separation (VAS)法によるGaN基板製造の工程

藤倉 序章ほか、HVPE 法による高品質GaN on GaN ウエハ、日本学術振興会「結晶加工と評価技術第145委員会」第178回研究会資料(2023. 1. 18), P.5~10.

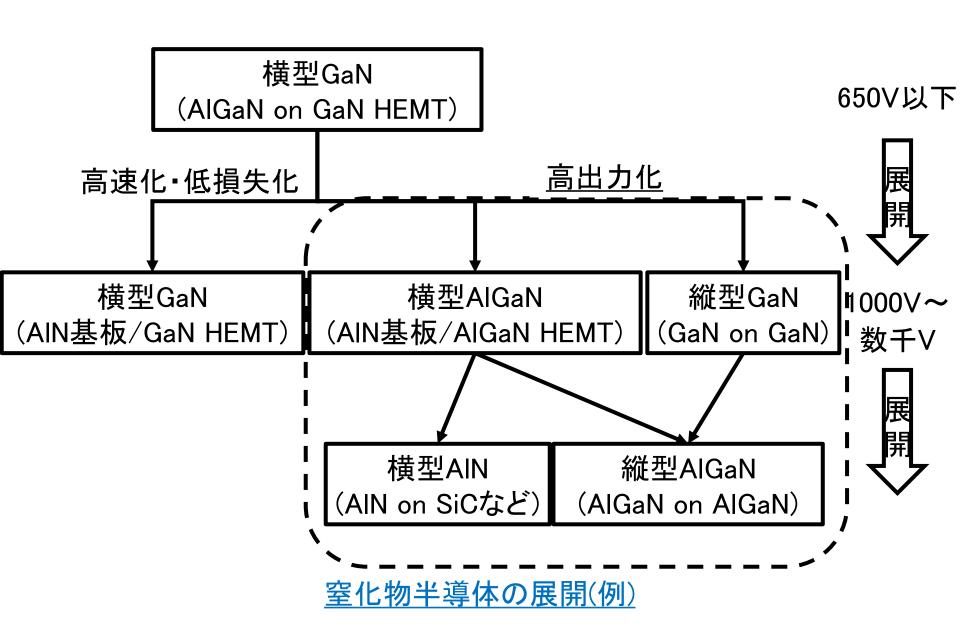
ポイントシード法 サファイア基板に微 小GaNドットを形成

<u>Naフラックス法</u>

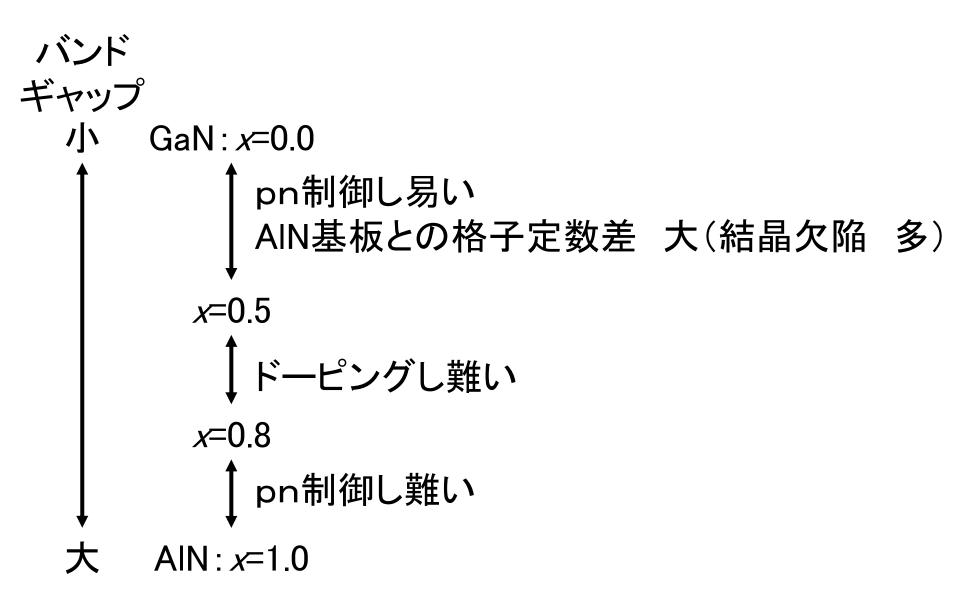
数十気圧、800℃の窒素内でNaとGaの混合液体により液相成長



GaN基板製造の工程:ポイントシード法とNaフラックス法


https://xtech.nikkei.com/atcl/nxt/column/18/02111/082000006/https://xtech.nikkei.com/atcl/nxt/column/18/02277/012700003/

大口径の基材と多くの種結晶を利用すれば、大口

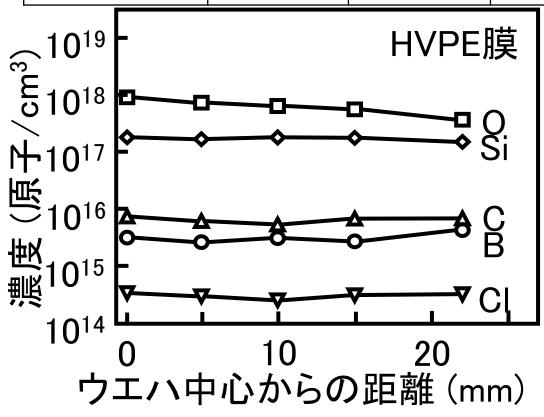

径(例、10インチ)の基板を同じ速さで作れる。

<u>量産:ポイントシード法・Naフラックス法+アモノサーマル法</u>

AIN基板/AI_xGa_{1-x}N HEMT の特徴

窒化アルミニウムガリウム(AIGaN)

GaNのGa原子の一部をAI原子に置き換えた混晶の材料 GaN以上の耐圧を確保できる。 パワーデバイスの他に高周波デバイスや発光素子としての研究も進む。


窒化アルミニウム(AIN)

GaNと同じ結晶構造 2022年4月に、ごく初期的なAINトランジスタが世界で初め て開発された。

窒化アルミニウム単結晶ウエハ

https://www.tokuyama.co.jp/research/recent_study/single_crystal_aln.html

	C (cm ⁻³)	O (cm ⁻³)	Si (cm ⁻³)
HVPE膜	7×10^{15}	8×10^{17}	2×10^{17}
基板(PVT)	3×10^{19}	2 × 10 ¹⁹	5×10^{18}

窒化アルミニウム トランジスタ

https://xtech.nikkei.com/atcl/nxt/column/18/01537/00351/

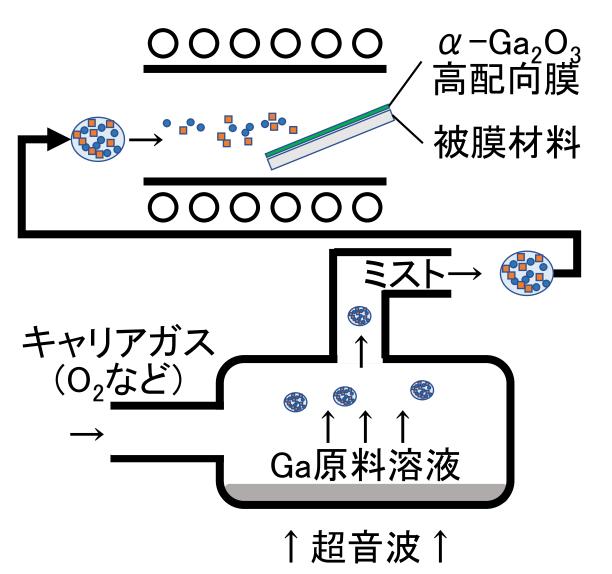
- •MOCVD法(不純物と 結晶欠陥を低減)
- Si添加によりn型
- •電子移動度 大

不純物濃度と分布

酸化ガリウム

Ga_2O_3

- 1)基礎研究・デバイス・実装の開発が2010年ころから着実に進められている。
- 2)パワー半導体の材料としてSiCより優れる。


バリガ性能指数

lpha酸化ガリウム Siの約6000倍

絶縁破壊電界大、薄膜で高耐圧が可能

β酸化ガリウム Siの約3000倍 オン抵抗:SiCの1/10

3)結晶基板をSiC(気相成長)より安く作れる。 α酸化ガリウム ミストドライ法 コスト: SiCの1/2~1/3 β酸化ガリウム 融液成長法 SiCの100倍速い 硬さがSiにほぼ同じ。 Si用製造装置をそのまま使える。

Ga₂O₃薄膜 基板:サファイヤ (直径4インチ)

α-Ga₂O₃ の製法(ミストCVD法) 真空装置不要 https://flosfia.com/technology/

αGa_2O_3

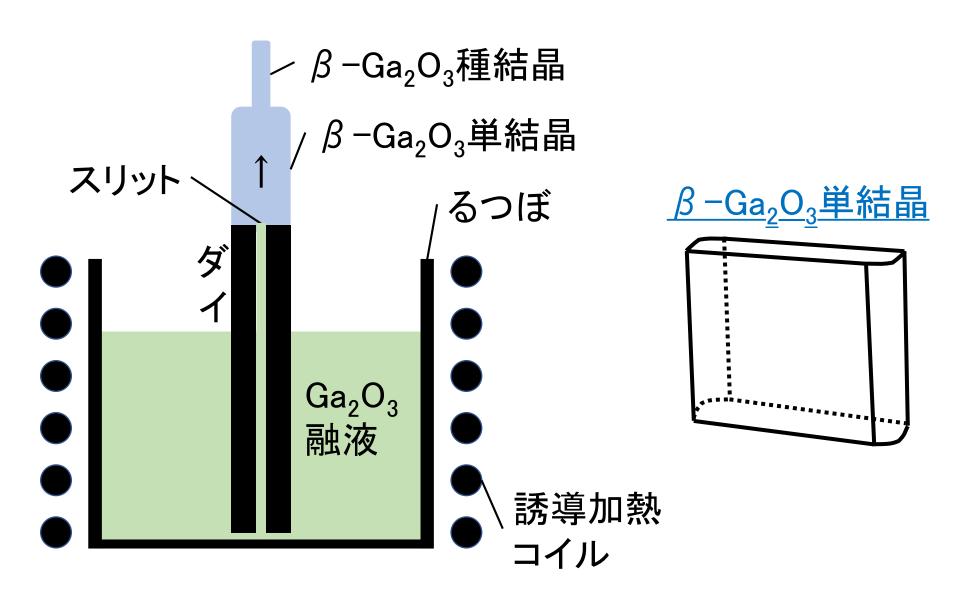
α酸化ガリウム:ミスト法(サファイア基板上にエピ成長)

基板(サファイア)との格子定数差→欠陥を生じ易い。

100mmΦまで製膜実績あり

n型:Si,Sn

p型:酸化イリジウム(α-Ir₂O₃)


1

厚い結晶 HVPE法

$$O_2$$
, H_2O+N_2 結晶膜 Cl_2 , $HCl+N_2$ O_3 O_4 O_5 O_5 O_6 O_7 O_8 O_8

HVPE法製膜装置

https://flosfia.com/technology/

<u>β-Ga₂O₃結晶融液成長法模式図</u>

$\beta \text{ Ga}_2\text{O}_3$

融液成長法: SiC(気相法)より著しく速い

基板結晶 100mm Φまで開発済み

熱伝導率が低く、放熱性が悪い。

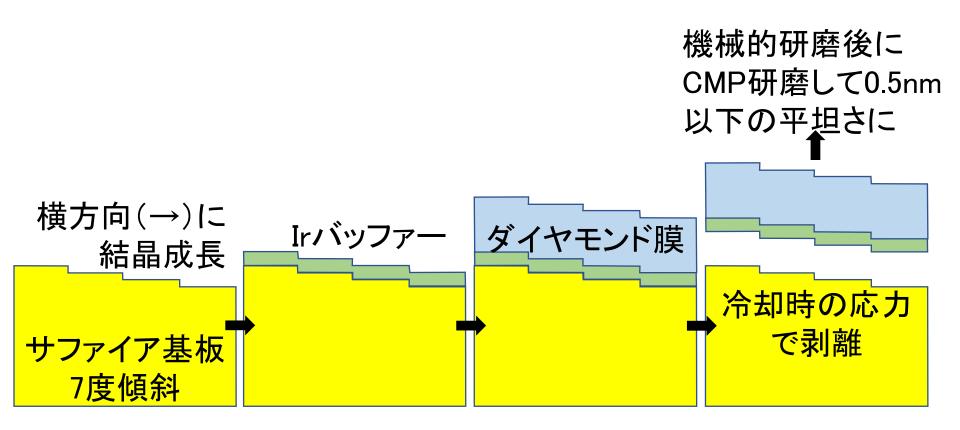
→研磨によってデバイスを薄くし、熱が溜まらないように

n型:Si, Sn p型を作るのが難しい。→非晶質酸化物(酸化銅(I)や酸 化ニッケル)を組み合わせるなどの工夫

コスト: 坩堝が高価(イリジウム)

→るつぼを使わない作製法へ

ダイヤモンド

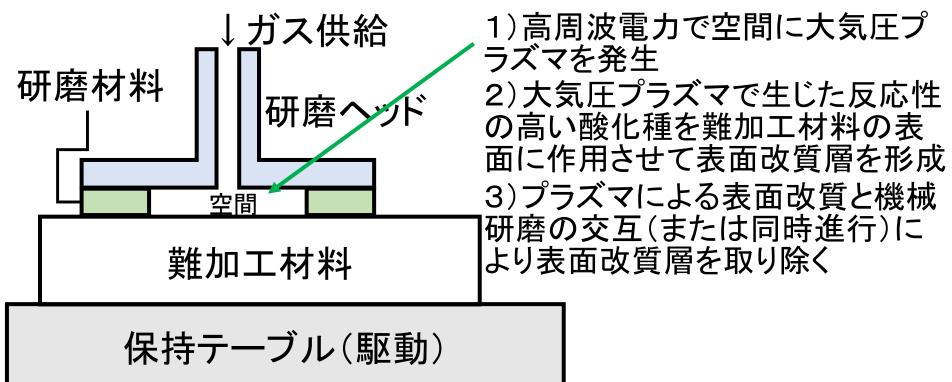

ダイヤモンド

耐圧、移動度、熱伝導率、pn両制御など:高い水準 基板の大型化 2インチ化に成功 放射能、高温、低温などの過酷な環境に優れた耐性がある ので、宇宙での利用に適している。

課題

基板の高品質化 大口径化 硬いために研磨も困難 ドーピング技術が十分に成熟していない 高コスト など

土屋 丈太、究極のパワーデバイス「ダイヤモンド」、早ければ2030年に普及開始も、日経クロステック/日経エレクトロニクス 2022.12.15. https://xtech.nikkei.com/atcl/nxt/column/18/02262/121300005/



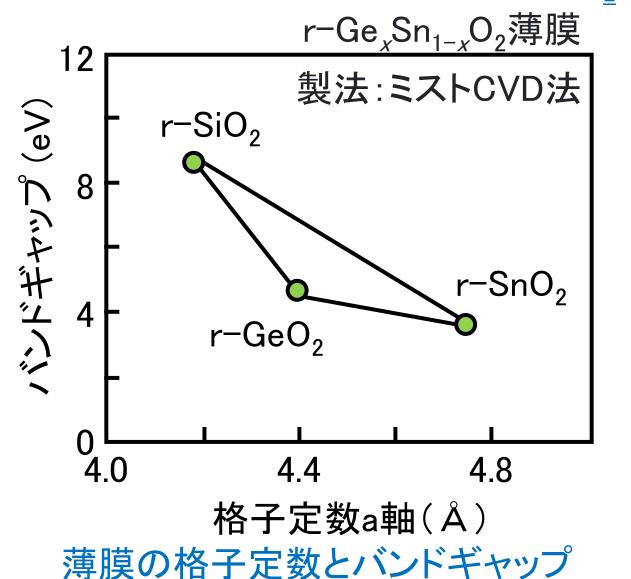
直径2インチ以上(55mm)のダイヤモンド基板の量産技術 https://orbray.com/magazine/archives/1598

ダイヤモンド研磨技術

<u>従来法</u>:ダイヤモンドの砥粒で削る。基板表面にダメージが入るとともに基板が割れ易い。研磨に長時間を要する。

プラズマを援用:効率的にダイヤモンド基板を研磨する技術

日本特許JP5614677B2 土屋 丈太、究極のパワーデバイス「ダイヤモンド」、早ければ2030年に普及開始も、日経クロステック/日経エレクトロニクス 2022.12.15. https://xtech.nikkei.com/atcl/nxt/column/18/02262/121300005/


ダイヤモンド研磨技術

プラズマを援用: 効率的にダイヤモンド基板を研磨する技術

- 石英ガラス製回転定盤にアルゴン+酸素プラズマを照射し、 ダイヤモンド基板を押し当てて研磨
- ・低研磨圧力でも高能率で良好な表面粗さに
- ・大面積モザイク単結晶ダイヤモンド基板(20mm角)を $10 \mu \, \text{m/h以上} (13 \mu \, \text{m/h})$ の速度で研磨(他の化学的な作用を援用する研磨手法の10~100倍以上)
- ●0.3nmオーダーまで平坦化

ルチル型二酸化ゲルマニウム(r-GeO₂)

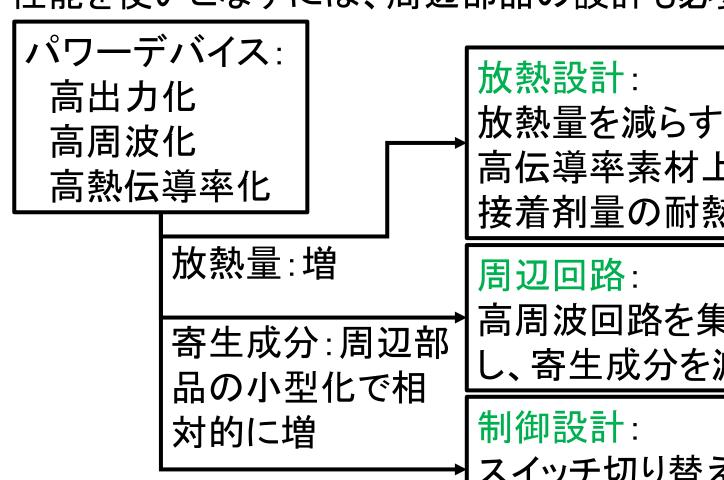
ルチル型二酸化ゲルマニウム(r-GeO₂)

https://kyodonewsprwire.jp/release/202209096241

<u>ルチル型二酸化ゲルマニウム(r-GeO₂)</u>

水熱合成法でバルク結晶育成 ミストCVD法で薄膜形成

r-Ge_xSn_{1-x}O₂薄膜


- 組成によりバンドギャップが増大
- •0≤x≤0.57におけるn型伝導性を実証
- •r-GeO2ならびにGe含有量の高い組成のr-Ge_xSn_{1-x}O₂におけるp型ドーピングの可能性

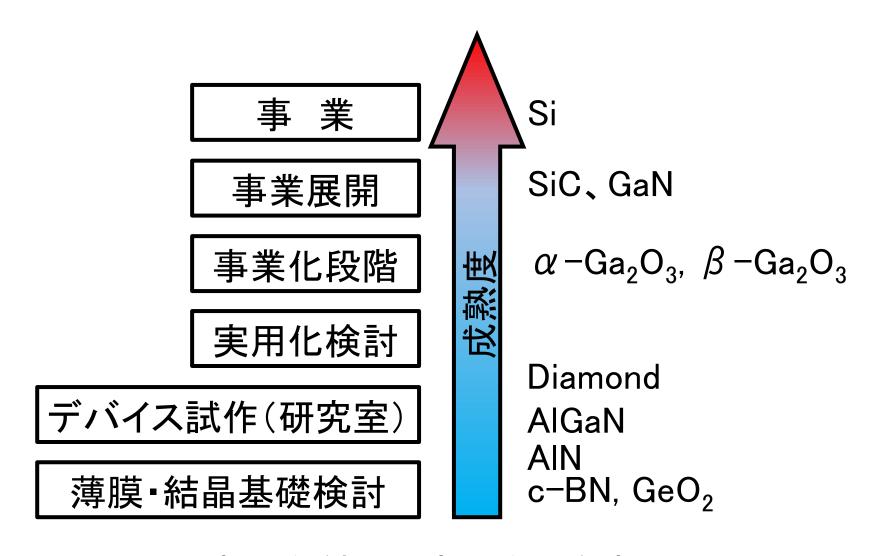
UWBG結晶の課題

バンドギャップが大きい材料は一般にp型とn型の両立が難 Ga₂O₃とAIN p型制御が困難 例 伝導帯 伝導帯
→n型ドーパント→ 広 →p型ドーパント→ 価電子帯 価電子帯 上下の帯との 大 小 エネルギー差 室温の熱エネ 容易 困難 ルギーで励起 禁制帯幅とドーパント準位からの励起(同じ元素を使用時)

UWBG実装技術の課題

性能を使いこなすには、周辺部品の設計も必要

時間当りスイッチ


ング損失:増

高伝導率素材上に取り付け 接着剤量の耐熱性確保

高周波回路を集積化(小さく) し、寄生成分を減

スイッチ切り替えのアルゴリ ズムでスイッチング損失を減

まとめ:パワーデバイス用半導体結晶材料の段階

新たな結晶→新たな可能性